
Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Adopting a Global Strategy for Governing
Infrastructure-as-Code (IaC)

A Blueprint for
Terraform Management

WHITEPAPER

By Kurt Wysock, RCG Cloud Engineering Practice Leader and
Mark Sontz, RCG Principal Solutions Architect

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Introduction

Adoption of Terraform

Terraform is an open-source infrastructure as code (IaC) tool that enables users
to automate the provisioning, deployment, and management of cloud resources. It
was first released in 2014 by HashiCorp, and since then, it has become one of the
most popular IaC tools in the industry. Terraform provides a declarative language for
describing infrastructure and a set of providers to interact with different cloud service
providers. This white paper discusses the adoption and maturity of Terraform in the
industry.

Terraform has gained a lot of popularity in recent years, with many companies and
organizations adopting it as their primary tool for infrastructure management. The
reasons for this adoption are numerous, but some of the most common include:

1.	 Multi-cloud: Terraform supports multiple cloud providers, including AWS,
Azure, GCP, and many others, making it an attractive choice for companies
that use multiple cloud providers.

2.	 Infrastructure as code: Terraform provides a way to define infrastructure
as code, enabling teams to manage infrastructure in the same way they
manage application code.

3.	 Declarative: Terraform is a declarative language. You specify what you want
provisioned, not how to provision resources. Every time a piece of terraform
code is executed to provision a resource, that resource will be the same,
exactly as you specified.

4.	 Version control: Terraform code can be stored in version control systems like
Git, allowing teams to track and audit changes, collaborate, and roll back
changes as needed.

5.	 Automation: Terraform automates the provisioning and deployment of
infrastructure, reducing the time and effort required to manage resources
manually.

6.	 Modular design: Terraform has a modular design, allowing teams to reuse
code and create a library of infrastructure modules that can be easily shared
across different projects.

1

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

A layered Approach to Managing
Terraform Modules

Maturity of Terraform

As organizations move towards cloud-native architectures, infrastructure
management has become increasingly complex. To manage this complexity, many
organizations have adopted Infrastructure as Code (IaC) tools like Terraform.
However, managing infrastructure with Terraform requires careful planning and
coordination across different teams, including infrastructure, network, security,
and application teams. We will discuss the best practices for managing Terraform
modules in a layered approach between these teams.

Terraform has evolved significantly since its initial release, and its maturity can be
evaluated from various perspectives.

1.	 Features: Terraform now has an extensive feature set, including support
for multiple cloud service providers, a rich set of resource types, a powerful
language for defining infrastructure, and a growing ecosystem of providers
and plugins.

2.	 Community: Terraform has a large active community of users and
contributors. The community provides support through forums, GitHub
issues, and other channels, and also contributes to the development of
Terraform by creating plugins and modules.

3.	 Integration: Terraform integrates well with other tools and platforms, including
popular CI/CD tools like Jenkins and CircleCI, as well as cloud management
platforms like CloudHealth and Turbot.

4.	 Security: Terraform provides several security features, including support
for secrets management, role-based access control, and compliance with
industry standards like SOC 2 and HIPAA.

5.	 Best practices: Terraform has a growing set of best practices and guidelines
for using the tool effectively, including recommendations for modular design,
version control, testing, and more.

2

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Layered Approach
One of the best practices for managing Terraform modules is to use a layered
approach that separates the infrastructure, network, security, and application
layers. This approach enables teams to work independently while ensuring that
infrastructure changes are made in a controlled and coordinated manner.

The infrastructure layer is responsible for managing the foundational resources
required for the cloud environment, such as compute instances and storage. The
network layer is responsible for managing the network resources required for
the cloud environment, such as Virtual Private Clouds (VPCs), load balancers,
subnets, and security groups. The security layer is responsible for managing the
security resources required for the cloud environment, such as identity and access
management (IAM), security policies, and encryption keys. The application layer is
responsible for managing the application-specific resources required for the cloud
environment, such as databases, messaging services, and containers.
Each layer should be managed by a separate team with specialized knowledge and
expertise in that area. This approach ensures that changes are made in a controlled
and coordinated manner, reducing the risk of errors and conflicts.

Module Management
In addition to the layered approach, there are several best practices for managing
Terraform modules within each layer.

1.	 Reusability: Modules should be designed to be reusable across different
projects and environments. This approach reduces duplication of effort and
enables teams to share best practices and common resources and ensures
consistency across the organization.

2.	 Modularity: Terraform modules should be designed to be modular, with well-
defined inputs and outputs. This approach enables teams to build complex
infrastructure by combining smaller, reusable modules.

3.	 Version Control: Modules should be stored in version control systems like
Git, allowing teams to track and audit changes, collaborate, and roll back
changes as needed.

3

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

4.	 Testing: Modules should be tested thoroughly before being deployed to
production environments. This approach reduces the risk of errors and
conflicts and ensures that changes are made in a controlled and coordinated
manner. Terratest is a great automated testing framework for testing your
IaC code.

5.	 Documentation: Modules should be well documented, with clear descriptions
of their inputs, outputs, dependencies and usage examples. This approach
reduces the risk of errors and conflicts and enables teams to understand how
the infrastructure is designed and implemented.

6.	 Security: Modules should be designed with security in mind, including
support for secrets management, role-based access control, and compliance
with industry standards like SOC 2 and HIPAA.

Hardening of Environments using
Terraform
As organizations move towards cloud-native architectures, securing their
environments has become increasingly important. One way to achieve this is by
using Infrastructure as Code (IaC) tools like Terraform to automate the process
of hardening an environment. We’ll discuss the best practices of hardening an
environment using Terraform for use with application development teams.
What is Environment Hardening?

Environment hardening is the process of securing an environment by minimizing
its attack surface, reducing vulnerabilities, and ensuring compliance with industry
standards and regulations. This process includes securing servers, networks,
and applications, as well as ensuring that data is stored securely and access is
controlled.

4

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Best Practices for Environment Hardening with Terraform
1.	 Use Security Best Practices: Terraform modules should incorporate security

best practices to ensure that the infrastructure is secure. This includes using
secure protocols for communication, setting up firewalls, and ensuring that
data is encrypted at rest and in transit.

2.	 Follow the Principle of Least Privilege: The principle of least privilege is
the practice of granting users only the minimum permissions they need to
perform their tasks. In Terraform, this can be achieved by using roles and
policies to restrict access to resources.

3.	 Automate Security Configuration: Terraform modules should be designed to
automate the configuration of security controls, including user authentication,
encryption, and network segmentation. This approach ensures that security
controls are consistent across the environment and reduces the risk of
human error.

4.	 Manage Secrets Securely: Terraform should be used to manage secrets
securely, such as API keys, passwords, and other sensitive data. Secrets
should be stored in secure vaults and accessed using least privilege policies.

5.	 Conduct Regular Security Audits: Regular security audits should be
conducted to ensure that the environment is secure and compliant with
industry standards and regulations. Terraform modules can be used to
automate security audits and report on vulnerabilities and compliance issues.

6.	 Use Immutable Infrastructure: Immutable infrastructure is an approach to
infrastructure management where infrastructure is treated as disposable
and is replaced rather than modified. This approach reduces the risk of
configuration drift and ensures that the infrastructure is always in a known,
secure state.

5

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Policy as Code
As organizations move towards Infrastructure as Code (IaC) with tools like
Terraform, it’s essential to ensure that their environment stacks are secure and
compliant. One approach to achieving this is by applying policies to code in the
Terraform automation process.

What is Policy as Code?
Policy as Code is the practice of defining policies in code, which can be versioned,
tested, and enforced automatically. This approach ensures that policies are
consistent across the environment and reduces the risk of human error. Policies
can include security and compliance requirements, such as ensuring that resources
are encrypted, enforcing access controls, and adhering to industry standards and
regulations.

Why Apply Policies to Code in the process?

Applying policies to code as a step in the Terraform automation process ensures that
the environment stack is complete, secure and in a known state. Policy as Code can
be applied at build time (before the Apply step) to ensure what will be provisioned
is secure, then at runtime policies can check continuously and check what is
provisioned to ensure it remains in compliance.

Organizations can also ensure that their policies are up to date with the latest
industry standards and regulations. Policies can be updated and tested alongside
the infrastructure code, ensuring that the environment stack remains compliant and
secure.

6

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Best Practices for Applying Policies as Code
1.	 Use a Policy Framework: A policy framework can be used to define policies

in code and enforce them automatically. Frameworks such as Open Policy
Agent (OPA), Bridgecrew and HashiCorp Sentinel can be integrated with
Terraform to enforce policies.

2.	 Define Policies Early: Policies should be defined as early as possible in
the Terraform automation process. This approach ensures that policies are
considered throughout the infrastructure design process and are tested
alongside the infrastructure code.

3.	 Use Automated Testing: Automated testing can be used to ensure that
policies are applied correctly and that the infrastructure stack is compliant.
Testing should be automated and integrated into the deployment pipeline to
ensure that policies are enforced consistently.

4.	 Monitor Policy Compliance: Policy compliance should be monitored regularly
to ensure that the environment stack remains compliant with industry
standards and regulations. Monitoring can be automated, and reports can be
generated to highlight any non-compliant resources.

Terraform Adoption, Management, and
Governance

7

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

1. Choose a version control system: The first step is to choose a version control
system (VCS) to manage your Terraform code. Git is a popular choice, but
other VCS such as Mercurial, Subversion, or Perforce can also be used. It’s
essential to ensure that all team members are familiar with the chosen VCS
and can work with it efficiently.

2. Create a Terraform module: Terraform code can quickly become complex,
and to ensure consistency, it’s best to create a Terraform module. A
module is a reusable component that can be shared across multiple
Terraform configurations. The module should be designed to be flexible and
customizable, allowing the team to configure the infrastructure according to
their needs.

• Terraform deployments usually starts with an individual practitioner who
writes a Terraform configuration file (“infrastructure as code”), iterates to
make the plan correct, then applies the plan. As needs change, they modify
the configuration file and repeat the plan-and-apply process. If there’s a team
collaborating to use Terraform, rather than just one individual, the process
is basically the same, but they should use some sort of version-control to
provide a single source of truth.

• If there are several teams, each responsible for a different part of the
infrastructure, Terraform’s config files can be decomposed into separate
Workspaces, each of which can have role-based access control.

• In some organizations, there are many users, most of whom are not trained
on Terraform, and it wouldn’t be practical to train them all. One common
pattern is to have a few publishers and many consumers all working against
a central governed registry.

• Organizations can also use Sentinel to define and maintain a sandbox, which
polices what consumers can and cannot do (“policy as code”).

Single Team – Individual Contributors
Managing Terraform with a single team using version control involves creating a
streamlined process for developing and deploying infrastructure as code. Here are
the steps to follow:

8

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

3. Choose a version control system: The first step is to choose a version control
system (VCS) to manage your Terraform code. Git is a popular choice, but
other VCS such as Mercurial, Subversion, or Perforce can also be used. It’s
essential to ensure that all team members are familiar with the chosen VCS
and can work with it efficiently.

4. Create a Terraform module: Terraform code can quickly become complex,
and to ensure consistency, it’s best to create a Terraform module. A
module is a reusable component that can be shared across multiple
Terraform configurations. The module should be designed to be flexible and
customizable, allowing the team to configure the infrastructure according to
their needs.

5. Use branches: It’s essential to use branches to manage changes to the
Terraform code. The master branch should contain the stable, production-
ready code, while feature branches should be used to develop new
functionality or fix bugs. When a feature is complete, it should be merged into
development branch, qa branch and eventually the master branch after being
reviewed by other team members.

6. Use pull requests: Pull requests are a useful feature of VCS that allows
team members to review code changes before they are merged into
another branch. Pull requests can be used to discuss changes, request
modifications, or approve changes.

7. Use tags: Tags are a useful feature of VCS that allows team members to
mark specific versions of the Terraform code. Tags can be used to indicate
significant releases or milestones, making it easy to track changes over time.

8. Automate infrastructure deployment: Once the Terraform code is ready
to be deployed, it’s best to automate the deployment process. Tools like
Jenkins, CircleCI, or GitLab CI/CD can be used to automate the deployment
process, ensuring that the infrastructure is deployed consistently across
environments.

9. Audit and Monitor changes: Continuously audit and monitor changes in
your infrastructure, since changes in infrastructure can lead to new security
vulnerabilities or service disruptions.

9

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Layered approach –

Using Terraform workspaces to manage a layered approach with policies is a best
practice for managing complex infrastructure configurations that require multiple
environments and policies. Here’s how it works:

Layered Approach: The first step is to define a layered approach to your Terraform
configuration. This involves breaking down your infrastructure configuration into
separate layers based on functionality or environment. For example, you may have
a layer for networking, another for compute, and another for application deployment.
Each layer should be defined in its own Terraform configuration file. Examples
would be a team that manages the network and landing zones in the cloud. Platform
teams would segregate infrastructure buildouts and apply security, monitoring, and
logging features.

Workspaces: Next, use Terraform workspaces to manage each layer for each
environment. A workspace is a named state in Terraform that allows you to manage
multiple environments or configurations from a single Terraform configuration file.
For example, you might create separate workspaces for development, staging, and
production environments.

By using a layered approach with Terraform workspaces, you can ensure that your
infrastructure configurations are managed consistently across multiple environments
and with proper governance. This approach can also help to reduce the risk of
configuration drift and improve the overall maintainability of your infrastructure.

By following these steps, teams can effectively manage Terraform code using
version control, ensuring that changes are tracked, reviewed, and deployed
consistently across environments.

10

Multiple teams manage workspaces based on role

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Governed Self Service -

Using a Governed Registry for Terraform modules allows consumers to work with
pre-packaged modules in a self-service manner, while still enforcing governance and
control over the modules being used. Here’s how it works:

By using a governed registry for Terraform modules, teams can ensure that only
approved modules are used, while still allowing for self-service consumption. This
approach can help to improve the speed of infrastructure delivery, while reducing the
risk of configuration errors and inconsistencies.

1. Package Modules: The first step is to package the Terraform modules in a
way that makes them easy to consume. This involves creating a module
package that includes all the necessary code, documentation, examples, and
metadata to make it easy for users to understand how to use the module.

2. Store the modules: The modules are then stored in a governed registry,
which is a centralized location where approved modules are stored. This
can be an internal registry hosted on-premise or cloud-based solutions like
Terraform Registry or Artifactory. The governed registry acts as a single
source of truth for approved Terraform modules, making it easy for users to
find and use the modules they need.

3. Access Control: Access control is implemented on the governed registry
to ensure that only approved modules are available for self-service
consumption. Access can be granted based on role or group, allowing teams
to have granular control over who can access and use the modules.

4. Versioning and Auditing: The governed registry also allows for versioning
and auditing of the modules. This means that users can see the history
of changes made to a module and track any potential changes that could
impact their infrastructure.

5. Continuous Integration and Delivery (CI/CD): The governed registry can
be integrated with a CI/CD pipeline to automatically build, test, and deploy
Terraform modules. This ensures that modules are always up to date and in
sync with the latest changes in the infrastructure environment.

11

A governed registry allows an expanded consumption model

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential.

Policy as Code – Using Sentinel
Sentinel is a policy as code framework that can be used with Terraform to define and
enforce policies for infrastructure configurations. Here’s how Sentinel can be used
to apply policies as code against a sandbox to ensure application teams are working
within network and security policies:

1. Define Policies: The first step is to define the policies that should be
enforced. This can be done using Sentinel’s policy language, which allows
you to write policies in code. Policies can be defined for a wide range of
infrastructure configurations, including network and security policies.

2. Create a Sandbox: Once the policies are defined, create a sandbox
environment where application teams can work. The sandbox environment
should be separate from production environments and configured with
network and security policies that align with the policies defined in Sentinel.

3. Integrate Sentinel: Integrate Sentinel with Terraform to enforce policies in the
sandbox environment. Sentinel policies can be applied during the Terraform
plan and apply process, allowing for real-time enforcement of policies. When
a policy violation occurs, Sentinel will prevent the change from being applied
and provide feedback to the user on the violation.

4. Test and Refine Policies: Test the policies in the sandbox environment to
ensure they are working as expected. Refine the policies as necessary to
ensure they are effectively enforcing network and security policies.

5. Rollout Policies to Production: Once the policies have been tested and
refined in the sandbox environment, they can be rolled out to production
environments. By using Sentinel to enforce policies as code, application
teams can be confident that they are working within the network and security
policies defined by the organization.

By using Sentinel in Terraform to apply policy as code against a sandbox, application
teams can work in a controlled environment that aligns with network and security
policies. This approach can help to reduce the risk of configuration errors and
security breaches, while also improving the overall efficiency of infrastructure
delivery.

For a more in-depth look at the strategies discussed in this paper, see the following
resources: https://developer.hashicorp.com/terraform/tutorials

Further reading

12

 https://developer.hashicorp.com/terraform/tutorials

Kurt Wysock | RCG Cloud Engineering Practice Leader

Adopting a Global Strategy for Governing Infrastructure as Code (IaC)
© 2023 RCG. All Rights Reserved. Proprietary and Confidential. 13

About the Authors
Kurt Wysock
Cloud Engineering Practice Leader
Kurt is an accomplished enterprise architect with
experience delivering solutions in a broad range of
industry verticals. Kurt has led enterprise-wide, multi-
year application rationalization and modernization
programs that have delivered on both business and IT
strategy and goals. As RCG’s Cloud Engineering
Practice Leader, Kurt evaluates technologies,
vendors, and market trends and works with RCG’s
customers to help deliver application modernization
and cloud migration strategies and initiatives.

Mark Sontz
Enterprise Solution Architect
Mark is a seasoned Principal Solutions Architect with
over 36 years of experience in architecture,
operations, security, and site reliability engineering.
He has a proven track record of designing and
implementing complex cloud-based solutions for
clients across various industries. He is adept at
developing cloud migration strategies and has a deep
understanding in multi-cloud architectures using
AWS, Azure, and Google Cloud. He has experience
in implementing security, automation, and
observability tools to improve the reliability and
performance of cloud-based systems leveraging
Infrastructure as Code (IaC). Mark is a contributing
member of the Cloud Security Alliance (CSA).

