

Kinetic Stem Cell (KSC) Counting:

A brief introduction to the technology

Contact: James L. Sherley, M.D., Ph.D.

President & CEO

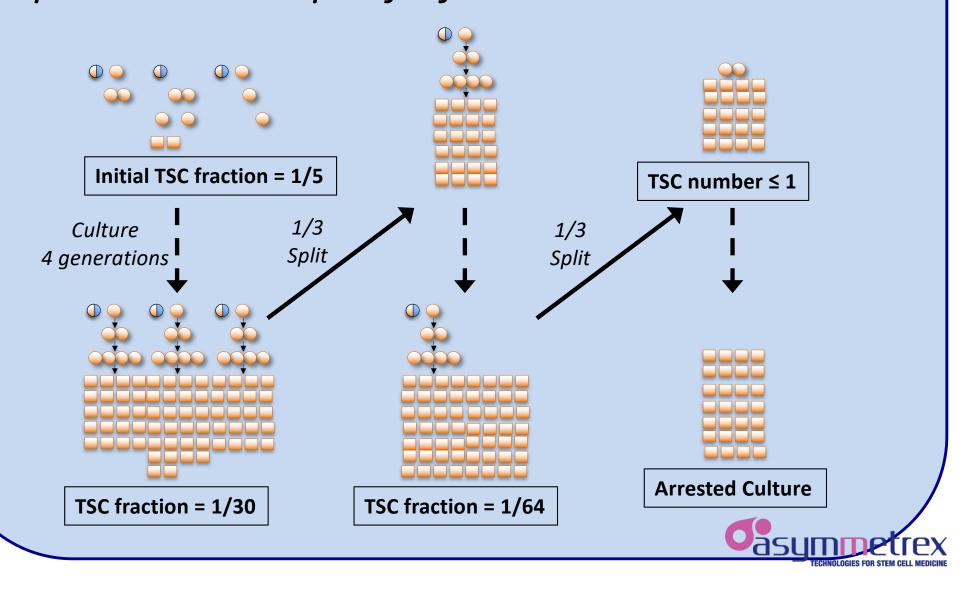
Asymmetrex[®], LLC

P.O. Box 301179

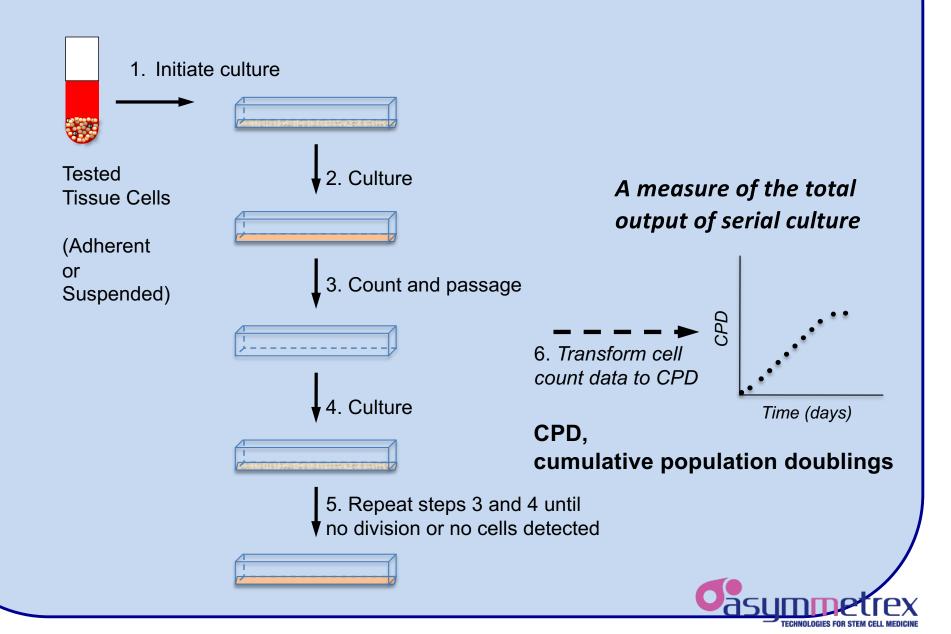
Boston, MA 02130

jsherley@asymmetrex.com, 1-617-990-6819

https://asymmetrex.com/


KSC Counting Principle I

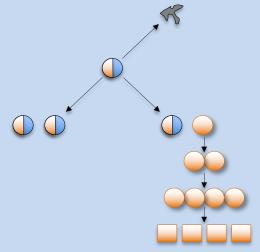
In vivo TSC kinetics continue in cell culture.



KSC Counting Principle II

Primary tissue cell cultures' total cell output depends on TSC-specific fraction and cell kinetics.

KSC Counting Begins with Serial Culture


CPD Kinetics Depend on Two Sets of Factors

• Rate
• Maximum
• Time of arrest

Known Culture Factors

Input cell number
Split interval
Split fraction
Cell viability

Time (days)

Unknown Cell Kinetic Factors

TSC Number

CPC Number

TAC Number

TSC Viability

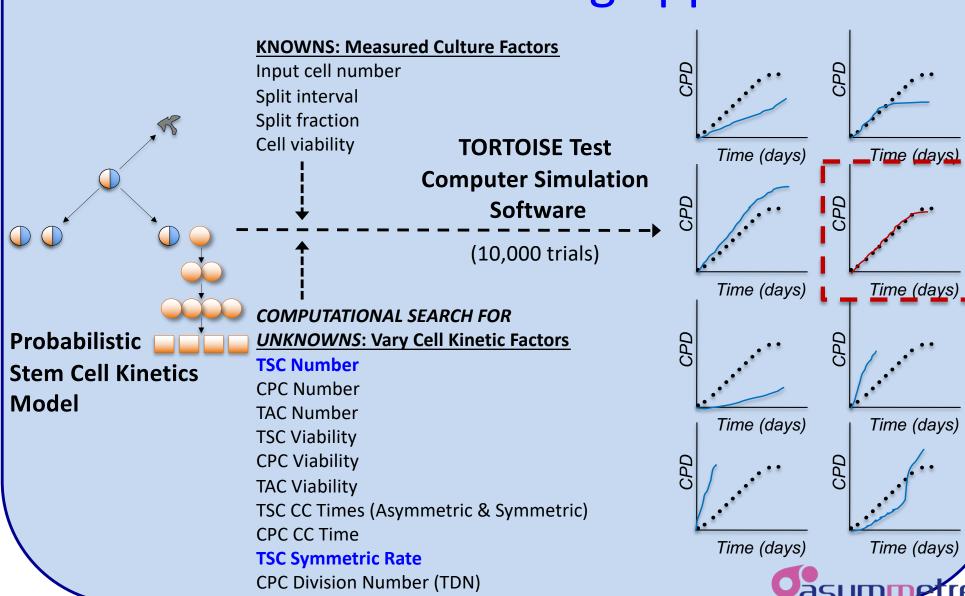
CPC Viability

TAC Viability

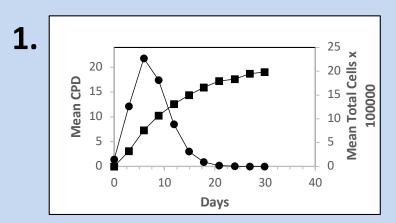
TSC Asymmetric CC Time

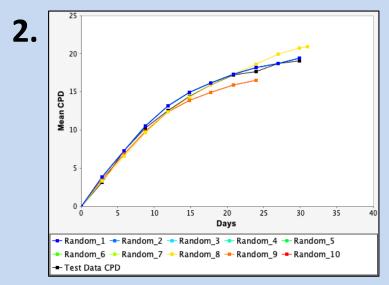
TSC Symmetric CC Time

CPC CC Time

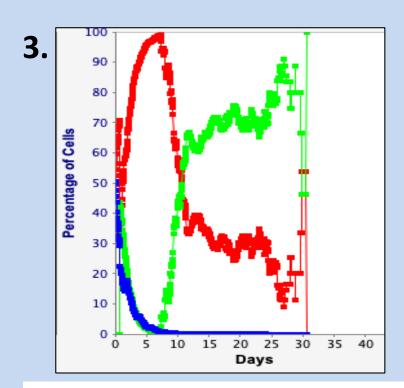

TSC Symmetric Rate

CPC Division Number


TSC, tissue stem cell; CPC, committed progenitor cell;
TAC, terminally-arrested cell; CC, cell cycle;
Division Number = number of divisions before producing TACs


KSC Counting – A computational simulation modeling approach

The KSC Counting Process



Serial Cell Count Data

TORTOISE Test Simulation

Example of 10 independent simulations

KSC Counting Cell Subtype Kinetics

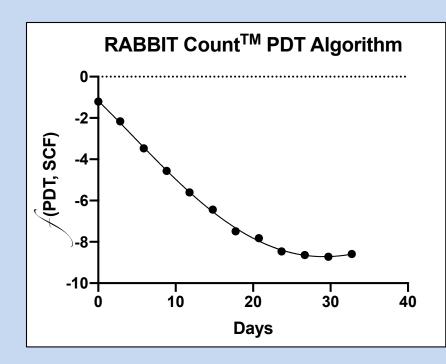
Blue – Tissue stem cells (TSCs)

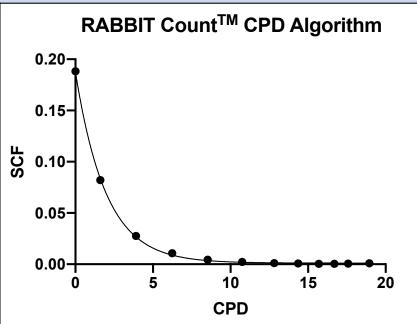
Red – Committed progenitor cells (**CPCs**)

Green – Terminally arrested cells (**TACs**)

Note: Analysis for CD34⁺ UCB cells

KSC Counting Validations


- I. Comparison to independent detection of asymmetric self-renewal divisons¹
- II. Analysis of effects of tissue stem cell-active agents (positive and negative factors)¹
- III. CD34⁺ fractionation analyses for HSCs^{1,2}
- IV. Comparison to SCID mouse repopulating cell assays for HSCs²
- **1.** 2020. Dutton et al., OBM Transplantation 4(3):24; doi:10.21926/obm.transplant.2003117.
- 2. 2022. Dutton et al., submitted.



Rapid-Counting Algorithms

For any day of serial culture, if you know the culture's PDT,

For any future cell culture, if you know the culture's CPD,

...you know the SCF.

...you know the SCF.

Note: Data for CD34⁺ umbilical cord blood HSCs **SCF**, stem cell-specific fraction; **PDT**, population doubling time; **CPD**, cumulative population doublings

Example of Online Rapid-Counting Calculator Portal

Asymmetrex® Rabbit Algorithm For Human Adipose-Derived Mesenchymal Stem Cells

This calculator allows determination of the tissue stem cell-specific fraction (SCF) of primary human adipose-derived mesenchymal stem cells when cultured in the following commercial cell culture medium:

Thermo Fisher MesenPro RSTM Basal Medium supplemented with MesenPro RSTM Growth supplement (Kit Cat#1276012), 2 mM L-glutatmine, and pen/strep.

Culture and counting procedures

- 1. In a 6-well plate, initiate evaluation cultures with ideally 50,000 to 100,000 total viable cells per 5.0 mLs of the culture medium specified above. Fewer cells can be used, but more cells should not be used. Recommend preparing 6 replicate wells.
- 2. Use 3 of the cultures to determine the mean total cell count 4-5 hours after plating. This analysis sets time = 0 hours.
- 3. Approximately 72 hours later, determine the mean total cell count in the remaining 3 cultures, time = "72 hours." This period should not be less than 66 hours and not more than 78 hours (i.e., range in fractional days from 2.75 to 3.25).

 Note: Accurate tissue stem cell counting requires an increase in total cell number during the period of this analysis.

Calculator Procedure

- 1. Enter, **d**, the number of days of serial culture from the first cryopreservation of the initial isolated primary tissue cell preparation (e.g., 0, 3.0, 6.0). Entry of fractional days is recommended for increased accuracy. **Important Note:** For **d > 0**, subsequent culturing must have occurred in the same culture medium as prescribed above. (*Calculators can be provided for other cell culture media and conditions. Please inquire.*)
- d 0.0
- 2. Enter No, the total number of cells (live and dead) in the evaluation cultures at time = 0.
- No 52000.0
- 3. Enter N72, the total number cells (live and dead) after approximately 72 hours of culture.
- N72 305500.0
- 4. Enter, in units of fractional days, T, the actual period of time between the N0 cell count and the N72 cell count.
- т 3.2
- Calculate

Human tissue stem cells counted to date

- Bone marrow hematopoietic stem cells¹
- Mobilized peripheral blood hematopoietic stem cells^{1,2}
- Umbilical cord blood hematopoietic stem cells*1,2
- Umbilical cord tissue mesenchymal stem cells
- Bone marrow-derived mesenchymal stem cells
- Adipose-derived mesenchymal stem cells*
- Oral-derived mesenchymal stem cells (bone, gingival, dental pulp)
- Liver hepatic stem cells
- Lung interstitial stem cells
- Corneal stem cells
- Amniotic membrane stem cells

*Available for preview now

- 1. CD34+-selected
- 2. Unfractionated

KSC Counting Applications

- Quantity tissue stem cell-specific fraction in research studies
- Monitor tissue stem cell-specific fraction during expansion culture
- Optimize tissue stem cell fraction for biomanufacturing
- Certify the tissue stem cell fraction of manufactured products
- Certify the stability and viability of cryopreserved tissue stem cells specifically
- Certify the potency of tissue stem cell culture medium and growth factors
- Determine the tissue stem cell-specific dosage of treatment preparations
- Evaluate drug candidates for tissue stem cell-specific effects:
 Positive expansion factors; potential healing therapeutics
 Negative early preclinical identification of tissue stem cell toxicity that causes chronic organ failure

For additional information:

https://asymmetrex.com/tortoise-test/

https://asymmetrex.com/rabbit-count/

https://asymmetrex.com/stem-cell-counting-center/

